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Perturbational view of inherent structures in water
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The existence of accurately measured oxygen pair-correlation functions for liquid water suggests a
natural form of linear perturbation theory for that substance. The unperturbed potential involves iso-
tropically interacting molecules, and reproduces the measured oxygen-pair short-range order. Monte
Carlo simulations in this theoretical context have been carried out for the unperturbed system and for
the fully coupled system in the liquid state at 25°C. Inherent structures (potential-energy minima) have
been generated and examined in both of these cases; they demonstrate that the directionality intrinsic to
hydrogen bonding plays an important role in structurally stabilizing short-range order at the pair and

higher-order correlation levels.

PACS number(s): 61.20.Ne, 61.25.Em

I. INTRODUCTION

The inherent structure concept for condensed phases
[1-3], and its numerical applications [4—6], have generat-
ed novel insights into a wide variety of physical and
chemical phenomena [7—12]. In particular, it has been
valuable to identify and to classify the inherent structures
(potential-energy minima) in water [13-16], and to follow
their chronological sequence during molecular-dynamics
simulation by steepest-descent mapping [17-19].

This paper examines inherent structures in water from
a somewhat unconventional standpoint. The water in-
teractions, as explained below, are theoretically embed-
ded in a perturbational format. When the relevant per-
turbation parameter A vanishes, we have a simple, but
nontrivial, reference model. Increasing A to the “physi-
cal” value unity restores the proper water molecule in-
teractions. It has been our objective to compare and to
contrast the inherent structures present in the system at
both extremes A=0 and 1 to attain new insights.

Section II defines and explains our perturbation
scheme. Section III presents properties of the A=0 refer-
ence model, including inherent structures, emerging from
Monte Carlo simulation. Section IV does the same for
the A=1 “real water” case. Section V draws some im-
portant conclusions.

II. PERTURBATION MODEL

We require that the molecular assembly of water mole-

cules be represented by an interaction potential
d(xy,...,Xy;A) that is linear in perturbation coupling
constant A,
D(xp, ... L XA)=(1—A)D(ry, ..., Ty)
FAD (X, ..., Xy) . (2.1

Here x; comprises position and orientation coordinates
for molecule i, while r; denotes the location of its oxygen
nucleus. For present purposes it suffices to suppose that
the water molecules are rigid, and that in the liquid state
they can be described by classical statistical mechanics.

The criteria applied in selection of the unperturbed in-
teraction @, were (i) that it consists of an additive sum of
central pair potentials acting between oxygens,

q>0(r1, e 2 Vo(rij) ,
ij
i<j

s Iy)= (2.2)

and (ii) that it alone will closely reproduce the measurable
oxygen short-range order in the water system at the given
temperature T and density p. This short-range order is
encompassed in the oxygen-oxygen pair-correlation func-
tion goo(r) that is provided by diffraction experiments.
With A=0, so that only ®, operates between the water
molecules, rotations about the oxygen centers are entirely
free.

As A increases from O to 1, torques develop between
neighboring molecules. In the fully coupled limit A=1
these torques describe formation of linear hydrogen
bonds between neighbors. It is generally conceded that
interactions in ‘“real” water can adequately be described
by a sum of intermolecular pair potentials, i.e.,

O, +0,= 3 Vx,x;), (2.3)
1
1<j j
where now of course the orientational degrees of freedom
explicitly come into play. The literature contains several
approximate forms that could be used for ¥?’ [20-23].

We have utilized the hypernetted chain (HNC) approx-

imation [24] to infer v, from the experimental g5 (7),
vo(r)=kgT[goo(r)—1—Ingyo(r)—C(r)] . (2.4)

Here C(r) is the oxygen-oxygen direct-correlation func-
tion, defined in terms of g, (7) by the Ornstein-Zernike
integral equation [25],

C("lz):goo("lz)‘_I“Pfc(rn)[goo("sz)_1]df3 .
(2.5)

Figure 1 displays the experimental g, determined for
liquid water at 25°C by Soper and Phillips [26], using
neutron diffraction. Figure 2 shows the resulting effective
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FIG. 1. Experimental oxygen-oxygen pair-correlation func-
tion for liquid water at 25°C, from Soper and Phillips (Ref.
[26)).

pair potential vy(#). Appendix A provides an accurate
analytical fit to v,(r) that we have found useful for our
Monte Carlo calculations. It is clear from Fig. 2 that v,
is qualitatively unlike any of the other pair interactions
that have been employed previously in liquid state stud-
ies, such as the venerable Lennard-Jones interaction.

The obvious next step is to verify the extent to which
criterion (ii) above is fulfilled by the calculated v((7). For
this purpose we have carried out a Metropolis Monte
Carlo simulation [27] for 216 molecules subject only to
interaction @, in a cubic unit cell with periodic bound-
ary conditions. Temperature was fixed at 25°C, and the
number density was set at the experimental value
(0.0334277 A™?). Pair interactions were truncated at
half the cell side length (9.313 A). Following a pro-
longed equilibration calculation (1X10° steps), goo in

r(A)

FIG. 2. Effective pair potential v, acting between oxygen
atoms, for liquid water at 25 °C.
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this unperturbed model system was evaluated over a

" 5X 10°-step Monte Carlo run (with approximately 50%

configurational-change acceptance rate). Figure 3 shows
the result, along with the Soper and Phillips result for
comparison. While the extent of agreement is reasonably
good, there are clearly some minor discrepancies, and we
suspect these are primarily attributable to the error in the
HNC approximation, Eq. (2.4), for the present applica-
tion. In any event the short-range oxygen order in the @
unperturbed state is distinctly waterlike, with 4.584
nearest neighbors on average out to a cutoff distance
r.=3.36 A (compared to 4.603 with the same r, for the
Soper-Phillips experimental g5n). No doubt some func-
tional fine tuning of v, could reduce the discrepancies in
Fig. 3, but for present purposes this is unnecessary.

The “real water” pair interaction ¥'?’=v,+v, that has
been used in our perturbed system calculations is a vari-
ant of the “ST2” pair potential [20]. Its details are
presented in Appendix B.

The linear perturbational format defined by Eq. (2.1)
and the additive forms for ®,, Eq. (2.2), and for &, Eq.
(2.3), are well suited for development of a statistical-
mechanical perturbation theory of the liquid state. Its
details will be presented in a separate publication [28].
The present project concentrates just on the end points
A=0and 1.

Monte Carlo calculations have also been carried out
for the fully coupled case, A=1, where ®,+ P, provides
the intermolecular interactions. The same system size,
boundary conditions, run length, and temperature ap-
plied; the last A=0 configuration supplied the starting
point. But, in addition, Pair interactions were disregard-
ed beyond distance 8.5 A between the oxygens, to facili-
tate the computations. Figure 4 displays the oxygen-
oxygen pair-correlation function for this case, along with
the Soper-Phillips experimental function. Once again
there are minor discrepancies, this time owing primarily
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FIG. 3. Comparison of the A=0 oxygen-oxygen pair-

correlation function at 25°C obtained by Monte Carlo simula-
tion (dotted curve) with the Soper-Phillips experimental result
(solid curve).
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FIG. 4. Comparison of the A=1 oxygen-oxygen pair-
correlation function at 25° from simulation (dotted curve) with
the Soper-Phillips experimental result (solid curve).

to error in the chosen model potential. Nevertheless, the
computed oxygen-pair short-range order is again reason-
ably faithful to the distinctive characteristics that set wa-
ter apart from other molecular liquids. Using the same
cutoff convention as before (r,=3.36 A), the mean num-
ber of nearest neighbors found from the A=1 Monte Car-
1o g0 is 4.850 (experimental value 4.603).

By construction the rotations of the water molecules
are entirely free at A=0. This implies that the potential-
energy minima are manifolds of dimension 3N +3 when
periodic boundary conditions are present. All structural
information is present just in the oxygen atom distribu-
tion functions when the system is in this uncoupled state.
But any increase in A above zero, however small, will
eliminate the rotational degeneracy and reduce the di-
mension of the potential-minimum manifolds to 3. As a
result, distribution functions involving hydrogen atoms
become relevant in specifying structure in the system.

III. A=0 INHERENT STRUCTURES

During the course of the Monte Carlo simulation
for the wunperturbed reference model, 50 system
configurations were stored for later mapping onto their
respective inherent structures. These configurations were
separated one from the next by 10* Monte Carlo steps.
The subsequent mapping onto potential-energy minima
involved direct numerical solution of the steepest-descent
equations [1]. Various properties were then evaluated as
averages over these 50 inherent structures for the unper-
turbed reference state. The mean values of the interac-
tion energy per particle before and after mapping to mini-
ma are the following:

—2.285 kcal/mol

(liquid at 25°C) ,
—3.335 kcal/mol

(inherent structures) .

(®,/N)= (3.1
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FIG. 5. Inherent-structure pair-correlation function for the
A =0 reference state (dotted curve), along with its unmapped
simulation precursor (solid curve) in the 25 °C liquid.

Figure 5 shows ggo for the A=0 inherent structures,
along with the same quantity prior to mapping to mini-
ma. Comparison of the two curves demonstrates the
effect of removing intrabasin vibrational deformation. As
usual this reduction to potential-energy minima, the in-
herent structures, markedly amplifies and clarifies the im-
age of short-range order. Indeed, the first-neighbor peak
of the inherent-structure goo has become separated by an
unoccupied gap. Furthermore, the second and third
peaks of the premapping goo have become substantially
more distinct after mapping, and an unsuspected weak
peak has arisen between them, centered near 5.7 A.

The narrow first peak in the inherent structure curve of
Fig. 5 coincides in distance with a narrow, shallow, but
distinctive minimum that is obvious in the plot of the
effective central pair potential in Fig. 2. Evidently this
positive-energy feature in v, traps approximately the
correct number of neighbors at 25°C to simulate water-

TABLE I. Distribution of nearest neighbors from the corre-
sponding simulations with r,=3.36 A.

A=0, 25°C A=0 A=1, 25°C r=1
equilibrium inherent equilibrium inherent

n liquid structures liquid structures
0 0.000 0.000 0.000 0.000
1 0.003 0.001 0.000 0.000
2 0.030 0.017 0.006 0.002
3 0.130 0.109 0.061 0.054
4 0.292 0.298 0.319 0.441
5 0.327 0.362 0.342 0.315
6 0.173 0.179 0.189 0.143
7 0.041 0.032 0.064 0.040
8 0.005 0.002 0.009 0.004
9 0.000 0.000 0.001 0.000
10 0.000 0.000 0.000 0.000
(n) 4.584 4:687 4.850 4.670
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FIG. 6. Distribution of angles to nearest neighbors in the
A=0 liquid at 25°C.

like short-range order. The previously used cutoff
r.=3.36 A falls just at the far side of the vacated gap in
Fig. 5, so the continued use of this distance criterion is
still valid to compute the mean number of nearest neigh-
bors in the inherent structures; we find 4.656 for this
quantity.

The first two columns of Table I contain the distribu-
tions of coordination numbers, using the same cutoff cri-
terion, for the A=0 liquid before and after reduction to
inherent structures. Evidently the removal of vibrational
distortion narrows the distribution somewhat, and shifts
the mean slightly to a higher value.

Figures 6 and 7 present the distributions of angles be-
tween neighbors subtended at a central particle, respec-
tively prior to, and after, mapping to potential minima.
Once again we observe substantial enhancement of the lo-
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FIG. 7. Distribution of angles to nearest neighbors for the
A=0 inherent structures.
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cal order. Broad features are present in both distribu-
tions around the tetrahedral angle 6,=cos™( -1
=109.5°. However, the most prominent characteristic is
a peak near 60°, already narrow in Fig. 6 and much more
so in Fig. 7. Doubtless these correspond to essentially
equilateral triangles of particles mutually caught in the
metastable minima of the interactions v,(r;;). Note also
that a substantial number of neighbor pairs exhibit large
angles, i.e., are almost in a linear arrangement. These
last may well account for the small but distinctive feature
at 5.7 A in the inherent structure goq, Fig. 5.

IV. A=1INHERENT STRUCTURES

With the unperturbed model results as background, we
next examine the inherent structures for the fully coupled
water system. First we note the mean values of the in-
teraction energy per water molecule, corresponding to
those shown earlier in Eq. (3.1),

—9.378 kcal/mol

(liquid at 25°C) ,

<((DO"'(I)I)/N)= —11.616 kcal/mol “.1)

(inherent structures) .

The first of these can be compared with the experimental
value of the binding energy per molecule in the 25°C
liquid, —9.77 kcal/mol [29]. The second is an average
over 50 individual inherent structures, computed from
starting configurations sequentially separated by 10* steps
in the Monte Carlo run; as in the A=0 case these were
obtained by integrating steepest-descent equations nu-
merically.

Figure 8 displays the goo(r) for the A=1 inherent
structures, along with the premapping function for the
A=1, 25°C liquid. The former should also be compared
to the analogous A=0 result in Fig. 5. While a significant
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FIG. 8. Inherent-structure pair-correlation function for the
A=1 system (dashed curve), and its unmapped simulation pre-
cursor (solid curve) in the 25 °C liquid.
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FIG. 9. Distribution of angles to nearest neighbors in the ful-
ly coupled (A=1) simulation liquid at 25 °C.

sharpening of the image of short-range order has oc-
curred, its extent is substantially less than was found at
A=0. The first peak has narrowed less in the present
case, and has not been separated by a vacant gap from
the remainder of the pair distance distribution. Further-
more, the second and third goo(7) peaks (particularly the
latter) have been relatively resistant to change under
mapping to potential-energy minima. It must be kept in
mind that these clear differences between the A=0 and 1
cases have emerged in spite of the fact that both started
with very similar premapping short-range oxygen-atom
orders at the pair level.

The latter two columns in Table I show the premap-
ping and post-mapping distributions of coordination
numbers for A=1. Once again we observe that removal
of vibrational distortion narrows the distribution, but
now shifts the mean a bit to a lower value.

Figure 9 contains the angle distribution for pairs of
neighbor oxygens in the coordination shell of any given
oxygen, for the A=1, 25°C liquid. Figure 1C presents the
corresponding distribution after mapping to inherent
structures. Probably the most illuminating feature that
these plots convey is the presence once again of compact,
nearly equilateral, triangles, though they are less fre-
quently encountered than before. Clearly these are not
elements of a random tetrahedral network, but are associ-
ated with local breakdown of tetrahedrality. Neverthe-
less, broad peaks centered near the tetrahedral angle 0,
are also obvious in Figs. 9 and 10, so roughly linear hy-
drogen bonds are present in profusion.

It was pointed out that comparison of the inherent
structure goo’s in Figs. 5 and 8 showed the fully coupled
liquid to be more resistant to short-range-order sharpen-
ing than was the uncoupled (A=0) liquid. A similar mes-
sage emerges from the angle distributions. The changes
effected by mapping at A=1, passing from Fig. 9 to Fig.
10, is relatively less than the corresponding changes illus-
trated by Figs. 6 and 7 for A=0. Evidently directed hy-
drogen bonds lock in structure so vibrations are less

FIG. 10. Distribution of angles to nearest neighbors for the
A=1 inherent structures.

effective in delocalizing oxygens.

The intermolecular pair cross-correlation function
gon(r) for the A=1, 25°C liquid appears in Fig. 11. The
Soper-Phillips experimental function is included for com-
parison. It is fair to say that overall the agreement is
good. The first peak of gy (r) is clearly to be associated
with the presence of nearly linear hydrogen bonds. Using
a cutoff distance criterion r,(OH)=2.35 A, the mean
number of H’s surrounding any O is found to be 1.86 and
1.66 for the simulational and experimental liquids, re-
spectively. This number is 2 in ice, of course.

Figure 12 exhibits the intermolecular pair cross-
correlation function goy(7) for the inherent structures.
The premapping function is included for comparison.
Substantial sharpening of the first and second peaks has
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FIG. 11. Intermolecular pair cross-correlation function

gou(r) for the A=1, 25°C liquid (dotted curve). The Soper-
Phillips experimental determination (Ref. [26]) is included for
comparison (solid curve).
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FIG. 12. Intermolecular pair cross-correlation function for
the A=1 inherent structures (dotted curve), and for the un-
mapped simulation liquid at 25°C.

obviously occurred, though the distribution continues to
be essentially flat at large separations. Notice that the
minimum of goy(7) for inherent structures, between the
first and second peaks, although lower than that before
mapping, remains significantly above zero. Using the pri-
or r,(OH) again, the mean number of neighboring H’s
around an O has climbed to 1.96.

V. CONCLUSIONS

Except for relatively minor discrepancies, the A=0 and
A=1 liquids at 25°C appear to have the same oxygen-
atom pair short-range order. No doubt, some small
refinements in v, and v, (i.e., %) could cause the goo’s
for these cases to agree perfectly with each other at 25°C,
as well as with the experimentally determined function.
It is important though to note that in spite of essential
agreement at the oxygen pair correlation level, the statis-
tical structures of the A=0 and 1 cases are not the same.
In particular, the premapping neighbor angle distribu-
tions shown in Figs. 6 and 9 are quantitatively quite
different. Furthermore, the first and third data columns
in Table I reveal significant differences. These contrasts
reflect distinct three-body, four-body, etc., correlations
for the two cases, that are clearly undetermined by two-
body correlations. This situation provides an undermin-
ing counterexample to the validity of the so-called “in-
verse Monte Carlo method,” [30-33] an approach which
attempts to reconstruct full statistical structure given
only correlation information at the pair level.

The vivid differences between the goo’s for A=0 and 1
inherent structures, Figs. 5 and 8, show that the nearly
identical 25 °C distributions of oxygen pairs are produced
in rather different ways. But, in both cases, A=0 and 1,
the vibrational excitations out of the corresponding sets
of inherent structures must be significantly anharmonic;
this is demonstrated by the fact that the thermal energy
increments shown in Egs. (3.1) and (4.1) substantially
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exceed the respective harmonic-oscillator equipartition
values 2k T and 3k, T.

Our water simulations are consistent with those of oth-
ers that have examined inherent structures [15,17], in
particular with respect to the importance of coordination
numbers differing from 4 [16]. From the point of view of
the statistical thermodynamic perturbation theory for
water [28] it is pleasing to verify that coordination de-
fects are even present in the unperturbed reference state
defined by &,

It has been pointed out before that coordination num-
bers greater than four are probably important for molec-
ular mobility in liquid water [16], and in particular may
be associated with bifurcated hydrogen bonds (an H
shared by two acceptor O’s in a pair of nonlinear H
bonds) [34]. As liquid water is cooled down to its melting
point, and especially down through the supercooling re-
gime, apparently the mean coordination number ap-
proaches 4 more closely. Almost certainly the same is ex-
pected for the corresponding inherent structures. Strong
supercooling entails substantial density decrease accom-
panied by substantial increase in overall binding energy
[35]. This is compelling evidence that coordination de-
fects are annealed out by the constant pressure supercool-
ing, to produce near the supercooling limit (—46°C) a
virtually perfect random tetrahedral hydrogen-bond net-
work. The activation energy for the strongly non-
Arrhenius shear viscosity confirms this view; it climbs
from about 4.2 kcal/mol at room temperature to at least
14 kcal/mol at —35°C [36]. Bifurcated hydrogen bonds
may well facilitate shear flow at room temperature, but
are apparently largely unavailable at the low-temperature
limit to mediate network restructuring. Only a more
energy-costly tear and repair mechanism may be avail-
able [37].

As we have defined the liquid-water perturbation prob-
lem, ®, in principle will be temperature and density
dependent. Unfortunately, adequate experimental data
for goo(r) over wide temperature and density ranges are
not yet available. We look forward to a change in this
situation, and to the opportunity to examine A=0 and 1
inherent structures in the strongly supercooled regime to
assess the qualitative picture just outlined.

Even though our calculations have been limited to the
25°C equilibrium liquid state (and its inherent struc-
tures), an important concept has emerged. By contrast
with the isotropically interacting A=0 system, the pres-
ence of directional hydrogen bonds at A=1 plays an im-
portant role in establishing and maintaining the many-
molecule arrangements that dominate system properties.
This is clear from the greater resistance of the A=1 sys-
tem to vibrational delocalization in comparison with
A=0, whether pair-correlation functions are examined,
or higher-order correlation measures.

APPENDIX A

The central interaction vy(r) was determined numeri-
cally from experimental input as described in Sec. II
above. The tabular results subsequently were fitted with
a finite combination of elementary functions. Specifically
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we have used the form

vo(r)=e[(a /r)"—(a /7)°]

4
+ 3 hiexp{—[(r —¢;)/w; 1*} . (A1)
i=1
Using, respectively, A and kcal/mol as the length and en-
ergy units, the 16 parameters have the following numeri-

cal values:

£=6.014X1073, 0=4.218,

a=9.056, b=4.044,
hy=—1.132, ¢,=2.845, w,=0.257,

(A2)
h,=1.664, c,=2.204, w,=1.945,
hy=—0.672, c;=4.489, w,=2.183,
h,=0.266 , c,=5.527, w,=0.577.

APPENDIX B

The pair interaction operative between fully coupled
water molecules has been denoted by ¥V ?=v,+wv, in the
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text. The specific case used for the Monte Carlo simula-
tion conforms functionally to that of the ST2 potential
[20], so we have

vo+vi=v(r) +S (ry va(x,,x;) (B1)

Here v;; is a Lennard-Jones 12-6 pair interaction, S is a
cubic spline function that interpolates smoothly between
O (at small r;) and 1 (at large r;). The orientation-
dependent function v, represents electrostatic interac-
tions between point charges, four rigidly affixed to each
water.

The functions vy and S remain the same as for the ST2
potential [20]. To improve Monte Carlo agreement with
the Soper-Phillips experiment [26], it seemed advisable to
modify the placement and magnitude of the point charges
somewhat. The angle between the two negative charges
representing ‘‘lone-pair electrons” has been increased
from 6, to 134.44°. The angle between the “proton”
charges continues to be 6,. The distances respectively to
“lone-pair” and “proton” charges remain at 0.8 and 1.0
A. Charge magnitudes have been increased from 0.2357e
(ST2) to 0.2457e (vy+vy).
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